MICROBIOLOGICAL TRANSFORMATIONS OF 38-ACETOXY-17a-AZA-D-HOMOANDROST-

5-EN-17-ONE AND 38-ACETOXY-ANDROST-5-EN-17-ONE WITH THE FUNGUS

CUNNINGHAMELLA ELEGANS

By Trevor A. Crabb^{*}, Philip J. Dawson and Roger O. Williams (Department of Chemistry, Portsmouth Polytechnic, Portsmouth, Hampshire) (Received in UK 2nd September 1975; accepted for publication 4th September 1975)

In contrast to the vast amount of information available concerning microbial transformations of steroids^{1,2}, there is a marked lack of data on transformations of heterocyclic steroidal systems³. As part of a programme aimed at assessing the influence of a ring-nitrogen atom on the course of microbial transformation of such steroid-like substrates, 3ß-acetoxy-17aaza-D-homoandrost-5-en-17-one (1) was incubated with <u>Cunninghamella elegans</u> Lendner (CBS 167.53), selected after a broad screening exercise. The lactam (1) was prepared from the oxime of 3ßacetoxy-androst-5-en-17-one (7) by a simple Beckmann rearrangement⁴.

The cultures of <u>C. elegans</u> were grown at 25° in 200 ml aliquots of nutrient medium⁵ for three days. A solution of the lactam (1) in ethanol was added (100 mg 1^{-1} of nutrient medium) and incubated for a further three days. Products were isolated by sequential column (alumina)

- (1) R=Ac, $R^{1}=R^{2}=H$ (2) $R=R^{1}=R^{2}=H$ (3) $R=R^{1}=H$, $R^{2}=OH$ (4) $R=R^{2}=H$, $R^{1}=OH$ (5) R=H, $R^{1}R^{2}=O$
- (13) R=Ac, $R^1=H$, $R^2=AcO$

(6)

and preparative layer (silica-gel) chromatography of the broth extract (CH_2Cl_2) : structures were assigned to these largely from a consideration of the n.m.r. -CHOH and olefinic proton resonances, together with the chemical shifts of the angular methyl groups (in relation to the parent compound⁶) - see Table 1. The $\Delta\delta$ values obtained from the aza-steroids were similar to those reported for their steroidal analogues⁶.

The products isolated from the incubation of (1) with <u>C. elegans</u> were:

3β-hydroxy-17a-aza-D-homoandrost-5-en-17-one (2, 0.2%)

 3β , 7α -dihydroxy-17a-aza-D-homoandrost-5-en-17-one (3, \simeq 6.7%)

 3β , 7β -dihydroxy-17a-aza-D-homoandrost-5-en-17-one (4, \simeq 6.7%)

3β-hydroxy-17a-aza-D-homoandrost-5-en-7,17-dione (5, 1.7%)

56,68-epoxy-38-hydroxy-17a-aza-D-homoandrost-5-en-17-one (6, 4.3%)

Unchanged starting material also present in the extract was not isolated. Similar incubation of the readily available 3β -hydroxy derivative (2) also yielded compounds (3)-(6).

Table 1. Relevant Chemical Shifts (p.p.m. from Me, Si in CDC13 solution)

of the Products from the Action of <u>C. elegans</u> on 3β-Acetoxy-17a-aza-D-homoandrost-5-en-17-one (1)

Compound	3α <u>Η</u> δ	6 <u>н</u> б	18-С <u>н</u> 3 б	19-с <u>н</u> з	7 <u>н</u> б	3α <u>Η</u> Δδ	<mark>6 <u>Η</u> Δδ</mark>	18-С <u>н</u> з ∆δ	19-С <u>Н</u> _3 Δδ
(2)	3.54	5.36	1.17	1.00	-	-	-	-	-
(3)	3.59	5.63	1.17	0.98	4.03	0.05	0.27	0.00	-0.02
(4)	3.57	5.29	1.19	1.04	3.94	0.03	-0.07	0.02	0.04
(5)	3.68	5.73	1.19	1.22	-	0.14	0.37	0.02	0.22
(6)	3.71	3.14	1.13	1.00	-	0.17	-2.22	-0.04	0.00

D-nomoandrost-J-en-17-one (1)

 $\Delta\delta$ values relative to (2); minus sign represents an upfield shift

The structures and stereochemistry of the allylic alcohols (3) and (4) were confirmed by alkaline hydrolysis of synthesised 7 3 β ,7 α -diacetate (13) to (3) and the characteristic 8 chemical shift for the C-6 proton and the 6,7-vicinal coupling constants ($J_{6,7\beta}$ =5.0 Hz for (3) and $J_{6,7\alpha}$ =2.5 Hz for (4)). Similarly, compound (6) was assigned the β -epoxide stereochemistry by comparison of its n.m.r. parameters with those of the synthesised 9 5 β ,6 β - and 5 α ,6 α -epoxides. The C-6 proton absorbed at lower field with a smaller vicinal coupling constant 10 in (6) than in the α -epoxide.

For comparison purposes, 3β -acetoxyandrost-5-en-17-one (7), a near-carbocyclic analogue of (1), was also incubated (250 mg 1⁻¹) with <u>C. elegans</u> to give, after a similar work-up procedure to that described, five steroidal products.

From microbial transformation of (7) were obtained:

 3β , 7α -dihydroxy-androst-5-en-17-one (8, 26.8%)

- 3β , 7β -dihydroxyandrost-5-en-17-one (9, 9.0%)
- 3ß-hydroxy-androst-5-en-7,17-dione (10, 5.4%)
- 38,14a-dihydroxy-androst-5-en-7,17-dione (11, 1.1%)
- 5β , 6β -epoxy- 3β , 12α -dihydroxyandrost-5-en-17-one (12, 4.1%)

The n.m.r. data summarised in Table 2 is completely consistent with the proposed structures.

Table 2. Relevant Chemical Shifts (p.p.m. from Me₄Si in CDCl₃ solution) of the Products from the Action of C. elegans on 3B-Acetoxy-androst-

<u>5-en-17-one (7)</u>										
Compound	3α <u>Η</u> δ	<u>6 н</u> б	18-С <u>Н</u> 3 б	19-с <u>н</u> 3 б	с <u>н</u> он б	3α <u>Η</u> Δδ	6 <u>Η</u> Δδ	18-С <u>н</u> з ∆б	19 Cℍ_3 Δδ	
(14)	3.54	5.39	0.89	1.04	-	-	-	-	-	
(8)	3.59	5.66	0.89	1.03	3.98	0.05	0.27	0,00	-0.01	
.(9)	3.57	5.32	0.90	1.08	3.98	0.03	-0.07	0.01	0.04	
(10)	3.70	5.76	0.90	1.23	-	0.16	0.37	0.01	0.19	
(11)	3.70	5.76	1.00	1.25	-	0.16	0.37	0.11	0.21	
(12)	3.76	3,15	0.86	1.04	4.21	0.22	-2.24	-0,03	0.00	

 $\Delta\delta$ values relative to (14); minus sign represents an upfield shift

(12)

(7)
$$R=Ac$$
, $R^{1}=R^{2}=R^{3}$

(8) $R = R^{1} = R^{3} = H$, $R^{2} = OH$

(9)
$$R = R^2 \approx R^3 \approx H$$
, $R^1 = OH$

(10) $R=R^{3}=H, R^{1}R^{2}=0$

(11)
$$R=H$$
, $R^{T}R^{2}=0$, $R^{3}=OH$

These results show that, under the conditions employed, the steroidal lactam (1) undergoes mono-oxygenation whereas the steroidal ketone (7) shows a tendency for di-oxygenation.

- W. Charney and H.L. Herzog, 'Microbial Transformation of Steroids A handbook', Academic Press, New York, 1967.
- L.L. Smith in 'Terpenoids and Steroids', ed. K.H. Overton (Specialist Periodical Reports), The Chemical Society, London, 1974, Vol. 4, p.394.
- H.O. Huisman in 'MTP International Review of Science, Organic Chemistry, Series one, Vol. 8, Steroids, p.235'. Butterworth and Co. Ltd., 1973.
- 4. B.M. Regan and F.N. Hayes, J. Amer. Chem. Soc., 1956, 78, 639.
- J.W. Blunt, I.M. Clark, J.M. Evans, E.R.H. Jones, G.D. Meakins and J.T. Pinhey, <u>J. Chem.</u> <u>Soc. (C)</u>, 1971, 1136 (Medium A, corn-steep liquor omitted).
- J.E. Bridgeman, P.C. Cherry, A.S. Clegg, J.M. Evans, E.R.H. Jones, A. Kasal, V. Kumar, G.D. Meakins, Y. Morisawa, E.E. Richards and P.D. Woodgate, <u>J. Chem. Soc. (C)</u>, 1970, 250; R.F. Zürcher, <u>Helv. Chim. Acta</u>, 1961, <u>44</u>, 1380; L.L. Smith, <u>Steroids</u>, 1964, <u>4</u>, 395.
- M.S. Kharasch, G. Sosnovsky and N.C. Yang, <u>J. Amer. Chem. Soc.</u>, 1959, <u>81</u>, 5819; L. Starka, <u>Coll. Czech. Chem. Comm.</u>, 1961, <u>26</u>, 2452.
- 8. C.W. Shoppee and B.C. Newman, J. Chem. Soc. (C), 1968, 981.
- L.F. Fieser and M. Fieser, 'Reagents for Organic Synthesis', John Wiley and Sons, Inc., New York, 1967, p.136.
- K. Tori, T. Komeno and T. Nakagawa, J. Org. Chem., 1964, 29, 1136; A.D. Cross, J. Amer. Chem. Soc., 1962, 84, 3206.